А. Б. Колдобский,
МИФИ, г. Москва

Стратегический подводный флот СССР и России

прошлое, настоящее, будущее

К середине 50-х гг. усилия сверхдержав по созданию современного термоядерного оружия увенчались успехом и в США, и в СССР, а форсированное развитие в обеих странах атомной промышленности позволяло непрерывно увеличивать темпы накопления ядерных боеприпасов. Однако такое накопление (да, в общем, и само наличие ядерных боеприпасов) не имело смысла без средств их доставки. И с этой точки зрения позиция США была несравненно более выигрышной, нежели положение СССР.

Главным фактором, определившим с начала 50-х гг. стратегическое преимущество США, была очевидная возможность осуществить массированный авиационный ядерный удар по СССР с опорой на сеть опоясывающих его территорию американских военных баз. При этом ответного удара возмездия по собственной территории США могли не опасаться √ аналогичной системы аэродромов передового базирования у СССР не было, а предельная боевая дальность единственного в то время советского носителя ядерного оружия √ бомбардировщика ТУ-4А (копии американского В-29) √ не превышала 5000 км. Предложения по ее ╚искусственному╩ увеличению, часто довольно экзотические (дозаправка в воздухе и на поверхности океана, создание сети ледовых аэродромов передового базирования в приполярной арктической зоне), практического развития не получили. Лишь после того как в конце 50-х гг. на вооружение советских ВВС стали поступать бомбардировщики ЗМ В.М.Мясищева и ТУ-95М А.Н.Туполева, авиационная доставка ядерного оружия к объектам в глубине территории США с последующим возвращением бомбардировщика стала практически возможной. Однако к тому времени США, с 1954 г. поставившие на вооружение стратегические бомбардировщики В-52 (которые до сих пор являются основой американских стратегических ВВС), ушли на этом направлении гонки вооружений далеко вперед. К 1960 г. сорока восьми советским ТУ-95М, каждый из которых мог нести по две водородные бомбы, США могли противопоставить одну тысячу пятьсот пятнадцать стратегических бомбардировщиков с более чем тремя тысячами ядерных бомб на борту. Впрочем, бесперспективность усилий по достижению ядерного паритета на ╚авиационном╩ направлении, вероятно, стало ясна советскому руководству еще раньше.

Ничем не могла помочь в 50-х гг. и ракетная техника сухопутного базирования. Изначальное требование достижения ракетой-носителем этого класса межконтинентальной дальности технологически означало необходимость ╚форсированного прыжка╩ через несколько ступеней технического развития, а такой путь никогда не бывает быстрым и гладким. Лишь 20 января 1960 г. в СССР была официально принята на вооружение первая в мире МБР сухопутного базирования √ P-7 С.П.Королева, да и количество ее боевых стартовых позиций на обоих объектах базирования (Плесецк, Байконур) даже позже никогда не превышало шести. Пройдет еще более десяти лет, пока сотни МБР М.К.Янгеля и В.Н.Челомея станут основой стратегических ядерных сил (СЯС) СССР.

А тогда, в 50-е гг., для советского политического и военного руководства становилось все более очевидным, что для обеспечения хотя бы принципиальной возможности нанесения сколько-нибудь чувствительного ядерного удара по американской территории без военно-технического освоения океанских просторов не обойтись. Однако при этом путь строительства мощного надводного флота (в первую очередь авианосного) был заведомо тупиковым √ как из-за громадных финансовых затрат и необходимости отвлечения огромных сил и ресурсов, совершенно неприемлемых для только-только поднимавшейся из военных руин страны, так и по причине колоссального преимущества американских ВМФ практически по всем количественным и качественным показателям. Это в случае начала масштабных боевых действий, несомненно, привело бы к немедленному уничтожению советского ударного флота задолго до его выхода на боевые позиции.

Оставались океанские глубины. А в описанных выше условиях бескомпромиссного политического и идеологического противостояния СССР и США, непрерывно набирающей темпы гонки вооружений, низкого порога начала военных действий в многочисленных локальных конфликтах, практически во всех случаях затрагивающих интересы сверхдержав, с этим надо было очень спешить. Кстати говоря, вне понимания этого жесткого военно-политического императива времен холодной войны логика ретроспективного анализа военно-исторических событий прошлого вообще, как правило, оказывается смещенной. Пример тому √ нынешние стенания ╚экологов╩ и ╚демократических журналистов╩ по поводу ╚несоразмерного развития╩ советского атомного подводного флота ╚без учета негативных экологических последствий╩. Сходные претензии можно предъявить, например, фельдмаршалу Кутузову за экологический ущерб, нанесенный русской природе при Бородино вследствие ее обильного полива ружейным свинцом.

Первые проекты. Ядерные торпеды

В отличие от ракет боевые торпеды к началу 50-х гг., когда стали появляться первые ядерные боеприпасы, были вполне заурядным вооружением подводных лодок (ПЛ). Поэтому главным препятствием для казавшегося несложным превращения даже обычных дизельных ПЛ в носители ядерных торпед стало отсутствие достаточно компактной ядерной боеголовки.

В 1951√1952 гг. конструкторы КБ-11 (Арзамас-16) начали разработку ядерной боеголовки для морских торпед в двух вариантах: калибром 533 (Т-5) и 1550 мм (Т-15). При этом, если торпеда меньшего калибра была штатным вооружением ПЛ, то размещение торпедного аппарата для ╚чудовища╩ диаметром свыше 1,5 м было делом весьма проблематичным даже для наиболее крупных советских ПЛ. Однако руководители советского атомного проекта уже знали то, что даже для потребителей √ военных моряков √ тогда, вероятно, оставалось тайной: 9 сентября 1952 г. лично И.В.Сталин подписал постанов ление Правительства СССР ╚О проектировании и строительстве объекта 627╩. Это был проект создания первой советской АПЛ (много позже, уже после принятия на вооружение ВМФ СССР, получившей, по классификации НАТО, обозначение ╚November╩). Именно для нее создавалась циклопическая Т-15.

Впрочем, история собственно АПЛ будет рассматриваться ниже. Здесь же отметим, что если проект ╚малой╩ ядерной торпеды Т-5 был воспринят военными моряками как минимум с пониманием, то против Т-15 руководство ВМФ возражало категорически, и на то были основания.

Дело в том, что различие калибров торпед отражало, разумеется, не только чисто технические аспекты устройства и размещения системы вооружений. Речь шла о различных концепциях использования оружия. Если вооружение ПЛ ядерной торпедой ╚нормального╩ калибра расширяло ее тактические возможности (что, разумеется, приветствовалось военными), то установка на лодку торпеды-гиганта, напротив, резко их сужало, фактически позволяя использовать корабль для выполнения лишь одной боевой задачи √ нанесения ядерных ударов по портам, гаваням и приморским городам. Это совсем не нравилось морякам (как мы увидим далее, не только из тактических соображений), но было тем ╚окном стратегической уязвимости╩ потенциального противника, мимо которого не могли пройти советские военные планировщики. Слишком уж много не только военных баз, но и крупных городов имеют США и их союзники на океанских и морских побережьях, и последствия таких ядерных ударов, даже с учетом неоптимальных условий подрыва ядерного боеприпаса (нулевая высота на береговой линии), были бы для этих стран воистину катастрофическими.

Тем временем разработка Т-5 (точнее говоря, ядерного заряда для нее) шла полным ходом. 19 октября 1954 г. этот заряд (под индексом РДС-9) был испытан на Семипалатинском полигоне, и в ходе этого испытания произошел первый отказ изделия в истории советских ядерных испытаний. Потребовалась дальнейшая доработка заряда, в ходе которой были выполнены два наземных испытания на Семипалатинском полигоне и одно (21 сентября 1955 г.) √ на Новоземельском. Этот взрыв, мощностью 3,5 кт, стал первым в СССР подводным ядерным испытанием. А 10 октября 1957 г. после успешных натурных государственных испытаний (подводный взрыв мощностью 10 кт при пуске с подлодки на расстояние около 10 км) торпеда Т-5 была принята на вооружение. Она стала первым ядерным оружием ВМФ СССР и родоначальницей ядерных торпед советских и российских многоцелевых ПЛ, предназначенных для решения оперативных и тактических задач морского театра военных действий (в первую очередь для борьбы с крупными наводными кораблями и ПЛ противника). Однако для решения стратегических задач этот род ядерного оружия не предусматривался и в этой статье в дальнейшем не рассматривается.

А вопрос о ╚ядерной суперторпеде╩ типа Т-15 позже был поставлен еще раз, причем таким человеком и в таком контексте, что мысль о чрезвычайной сложности жизни приходит сама собой. Речь идет об академике А.Д.Сахарове, который после успешного испытания 30 октября 1961 г. своей ╚супербомбы╩ мощностью 58 Мт задумывался о средствах доставки таких зарядов к цели. Было ясно, что громоздкое и неуклюжее ╚чудовище╩ (╚супербомба╩ имела длину 8 м и диаметр 2 м при весе 27 т) не по силам ни самолету (в режиме реального боевого вылета), ни ракете (во всяком случае ни одной из тогда существовавших или проектируемых). И вот тогда-то┘ А.Д.Сахаров: ╚┘Я решил, что таким носителем может являться большая торпеда, запускаемая с ПЛ. Я фантазировал, что можно разработать для такой торпеды прямоточный водо-паровой атомный реактивный двигатель. Целью атаки с расстояния несколько сот километров должны стать порты противника. <┘> Корпус такой торпеды может быть сделан очень прочным, ей не страшны мины и сети заграждения. Конечно, разрушение портов √ как надводным взрывом ⌠выскочившей■ из воды торпеды со 100-мегатонным зарядом, так и подводным взрывом √ неизбежно сопряжено с очень большими человеческими жертвами.

Одним из первых, с кем я обсуждал этот проект, был контр-адмирал Фомин┘ Он был шокирован ⌠людоедским характером■ проекта и заметил в разговоре со мной, что военные моряки привыкли бороться с вооруженным противником в открытом бою и что для него отвратительна сама мысль о таком массовом убийстве. Я устыдился и больше никогда ни с кем не обсуждал этого проекта╩.

Трудно сказать, могли бы эти идеи А.Д.Сахарова получить практическое развитие. Исключить такое до конца нельзя √ слишком велик был авторитет, которым он пользовался тогда ╚на самом верху╩ руководства страны. Но даже если не рассматривать морально-этические аспекты дела, а ограничиться лишь тактико-техническими, то становится очевидным: речь шла бы тогда, по существу, о создании принципиально нового типа оружия, и сама возможность этого была, мягко говоря, далеко не бесспорной. В первую очередь это было понятно специалистам. Видный конструктор советского ядерного оружия Л.П.Феоктистов: ╚┘хотя ⌠доктрина■ [А.Д.Сахарова. √ А.К.] была глубоко засекречена, в наших кругах она была широко известна и вызывала и иронию своей несбыточностью, и полное неприятие ввиду кощунственной, глубоко антигуманной сущности╩.

Но даже в случае реализации ╚суперторпеда╩ как средство доставки не имела бы никаких преимуществ, зато имела множество недостатков перед другим родом оружия, который в это время стал развиваться с невиданной быстротой, √ ракетной техникой, в том числе и морского базирования.

Без ядерных реакторов, но с ядерными ракетами.

╚Zulu╩ и ╚Golf╩.

Разработка баллистических ракет подводных лодок (БРПЛ) началась в СССР в 1954 г. В начале 1959 г. была принята на вооружение первая такая ракета √ Р-11ФМ √ в составе пускового комплекса Д-1. Сначала ее созданием руководил прославленный конструктор советской ракетной техники С.П.Королев, а с августа 1955 г. работы по Р-11ФМ были переданы в СКБ-385 (г. Златоуст Челябинской обл.), возглавлявшееся относительно молодым (31 год) инженером В.П.Макеевым. Именно Макееву (впоследствии академику) и суждено было стать создателем практически всех советских БРПЛ. В 1959 г. СКБ-385 было переведено в соседний Миасс, а с середины 60-х гг. оно стало называться Конструкторским бюро машиностроения (КБМ).

Одноступенчатая ракета Р-11ФМ на жидком топливе (керосине) имела дальность около 150 км при коэффициенте вероятного бокового отклонения (КВО) 0,75 км. Запуск ракеты с АПЛ мог осуществляться только в надводном положении с предварительным подъемом ракеты из шахты хранения. Моноблочная боеголовка была спроектирована под ядерный заряд типа РДС-4 мощностью около 10 кт, созданный в КБ-11 (Арзамас-16). Впрочем, и здесь достаточно быстро произошла замена исполнителей.

Как и следовало ожидать, естественные габаритные ограничения баллистических ракет морского базирования накладывали жесткие требования к компактности их ядерных боевых блоков. В соревновании за их создание между двумя конструкторскими бюро, занимавшимися в системе Минсредмаша СССР конструированием ядерных зарядов √ Арзамасом-16 и Челябинском-70, √ к началу 60-х гг. почти безоговорочную победу одержали специалисты Челябинска-70. Ядерное оснащение ракет морского базирования практически полностью состояло из продукции этого института.

Не исключено, конечно, что известную роль тут сыграло ╚соседство╩ √ и СКБ-385 Макеева, и Челябинск-70, руководимый Е.И.Забабахиным, находились в пределах одной области. Это, несмотря на жесткий режим секретности, значительно облегчало текущие контакты и согласования. Однако основная причина победы Челябинска-70 была все же в ином. Дело в том, что с самого начала своей деятельности (1957 г.) в качестве главного направления работы этого института была избрана именно миниатюризация ядерных зарядов (инициатором чего был его первый научный руководитель К.И.Щёлкин). Ко времени активного развертывания в СССР морского компонента ╚ядерной триады╩ конструкторам Челябинска-70 удалось в этом значительно опередить своих коллег-конкурентов из Арзамаса-16, чем и определился упомянутый выше выбор.

В начале 60-х гг. для оснащения ракет Р-11ФМ в Челябинске-70 была создана термоядерная боеголовка мощностью 500 кт. Впрочем, при обычном патрулировании ядерные боезаряды на этих ракетах, по-видимому, отсутствовали. Они складировались на наземных базах флота и должны были выдаваться на ПЛ в угрожаемый период при определенной степени боевой готовности.

Комплекс Д-1 стоял на вооружении подводного флота почти 18 лет (вплоть до 1967 г.). За это время было проведено 77 учебных пусков, из которых 59 были успешными. Но тогда, к середине 50-х гг., стало ясно: сравнительно надежная ракета-носитель будет готова раньше, чем АПЛ, пригодная для размещения ее стартового комплекса (хотя, как мы уже знаем, разработка такой АПЛ уже велась в течение ряда лет). Вполне логичным было и принципиальное решение √ разместить Д-1 на ╚традиционной╩ дизель-электрической ПЛ, поначалу ориентируясь на хорошо отработанную конструкцию (имея, разумеется, ╚в уме╩ и перспективы создания АПЛ).

Постановление Правительства СССР от 26 января 1954 г. в этом смысле очень интересно. Оно предусматривало, во-первых, модернизацию серийной дизельной советской ПЛ проекта 611 (по классификации НАТО √ ╚Zulu╩) с целью установки ракетного комплекса Д-1, а во-вторых, разработку новой конструкции дизельного подводного ракетоносца проекта 629 (╚Golf╩). Выполнение конструкторских работ по обоим проектам было возложено на ленинградское ЦКБ-16 (главный конструктор Н.Н.Исанин), а строительство √ на заводы 402, с середины 60-х гг. Севмашпредприятие (г. Молотовск, с 1957 г. √ Северодвинск), и 199, позже √ Амурский судостроительный завод (АСЗ, Комсомольск-на-Амуре).

Первый в мире подводный ракетоносец Б-67 серии 611 был спущен на воду в сентябре 1955 г. На ПЛ был установлен комплекс Д-1 с двумя БРПЛ Р-11ФМ. Первый в мире пуск баллистической ракеты с борта ПЛ был произведен 21 сентября 1955 г.

Всего до 1959 г. было построено шесть ПЛ проекта В-611 и его модификации АВ-611. Несмотря на ограниченность их значения в чисто оперативном смысле, их роль в формировании кадров советских подводников-ракетчиков, организации боевой службы и боевого патрулирования, создания береговой инфраструктуры ракетного подводного флота была чрезвычайно велика.

Век ПЛ проекта 611 оказался недолгим. Как подводные ракетоносцы они были сняты с боевого дежурства уже к 1967 г. Впрочем, трудно было ожидать иного от, по существу, опытного проекта √ главной его целью было не создание нового класса СЯС, а уяснение основных направлений дальнейшей деятельности, которые являются для этого первоочередными.

Эксплуатация ПЛ проекта 611 определила главные, в обсуждаемом смысле, недостатки достаточно четко. К их числу относились:

√ очевидная неприспособленность ПЛ старого образца для выполнения принципиально иных боевых задач (напомним, что сущность проекта 611 заключалась в технической адаптации серийных ПЛ к роли носителя баллистических ракет). Для размещения БРПЛ и систем их старта с ПЛ были убраны запасные торпеды и мины, почти все артиллерийское вооружение, демонтирована часть аккумуляторных батарей и тем не менее в полной мере достигнуть функциональной адаптации не удалось;
√ малая дальность ракет Р-11ФМ, в ядерном снаряжении не превышавшая 160 км. Это в совокупности с надводным пуском и относительно долгим его временем (около 15 мин) до неприемлемых пределов увеличивало вероятность раннего обнаружения и уничтожения ПЛ силами ВМФ и береговой обороны противника;
√ низкая скорость (не более шестнадцати с половиной узлов в надводном положении и двенадцати с половиной √ в подводном), что резко снижало эффективность преодоления непрерывно совершенствовавшихся средств противолодочной обороны (ПЛО);
√ малый подводный ресурс (не более 8 ч в неподвижном положении и 1,5 ч в режиме движения на аккумуляторной тяге). В этом смысле все ПЛ ╚доатомной╩ эры были, по существу, не подводными, а ╚ныряющими╩. Однако если для решения традиционных боевых задач подводного флота этот недостаток был лишь серьезным (хотя и объективно неизбежным) тактико-техническим ограничением, то для новой роли ПЛ как стратегической ядерной единицы он превращался в важнейшее негативное обстоятельство, часто совершенно неприемлемое с оперативной точки зрения;
√ недостаточная, с точки зрения военных планировщиков, ударная мощь каждой ПЛ как боевой флотской единицы.

Первый из перечисленных недостатков мог быть (по крайней мере в принципе) устранен созданием специализированного типа ПЛ даже в рамках традиционной дизель-электрической схемы, что и было сделано проектированием и постройкой ПЛ проекта 629 (по классификации НАТО √ ╚Golf╩). Это были уже почти чисто ракетоносные ПЛ √ их иные боевые функции имели вспомогательный, в основном защитный, характер. Первые ПЛ проекта 629 поступили на вооружение ВМФ СССР в конце 1958 г.

Для преодоления второго недостатка требовалась разработка нового стартового ракетного комплекса подводного базирования. Однако она велась со значительным опозданием, и первые ПЛ проекта 629 были вооружены еще старыми БРПЛ Р-11ФМ. Лишь с октября 1961 г. на вооружение советского подводного флота начал поступать новый ракетный комплекс Д-2 с ракетами Р-13. При сохранении основных черт комплекса Д-1 (одноступенчатая конструкция и жидкое топливо ракет, надводный старт) у него была существенно повышена ударная мощь (три ракеты вместо двух), и главное, почти в 4 раза увеличена дальность стрельбы (600 км против 160 у Р-11ФМ с ядерной боеголовкой мощностью 1 Мт). А в середине 1963 г. в истории советского подводного флота произошла ╚революция╩ √ на вооружение ПЛ проекта 629 были приняты в составе боевых комплексов Д-4 ракеты Р-21 с подводным стартом из затопляемой шахты и дальностью (с ядерной боеголовкой 0,8√1 Мт) до 1400 км. Ракеты ╚ушли под воду╩.

Это событие можно считать одним из важнейших в ╚ядерной истории╩ СССР и России. Оно, по существу, ознаменовало рождение морской компоненты ╚ядерной триады╩. Это подчеркивалось и значительными темпами наращивания ее мощи √ за 1958√1962 гг. на заводах 402 и 199 было построено (не считая опытных образцов) двадцать три ПЛ серии 629, из них четырнадцать позже были переоборудованы ракетными комплексами Д-4 с подводным стартом (модификация 629А). С таким флотом уже надо было считаться всерьез.

Конструкция ПЛ серий 629 и 629А оказалась весьма удачной √ даже значительно позже, уже в эпоху атомных ракетоносцев, они использовались для решения некоторых оперативных задач ВМФ и окончательно были сняты с вооружения лишь в 1990 г. К сожалению, именно им было суждено открыть мрачный список погибших советских ПЛ с ядерным оружием на борту. В апреле 1968 г. на подводном ходу под дизелем затонула на глубине 5700 м ПЛ К-129 проекта 629А, унеся с собой весь экипаж (98 человек) и три ракеты Р-21 с ядерными боеголовками мощностью по 1 Мт. Причины катастрофы неясны до сих пор. Это мог быть ╚провал╩ за предельную глубину погружения (300 м) вследствие внезапной поломки устройства для работы двигателя под водой и мгновенного поступления больших масс забортной воды или взрыв гремучего газа в аккумуляторном отсеке (последней версии придерживаются американские эксперты). Однако советские военные специалисты считают наиболее вероятной причиной гибели К-129 непреднамеренный таранный удар со стороны другой ПЛ (предположительно американской).

В июле 1974 г. часть К-129 была поднята в ходе проекта ╚Дженнифер╩, проводимого компанией ╚Хьюз╩ по заказу ЦРУ США. Данные о том, попали ли при этом в руки американцев российские ядерные боеголовки, достаточно противоречивы. Однако сведения об их конструкции (если это в действительности произошло) вряд ли оказало существенное влияние на прогресс в развитии американского ядерного оружия.

Но для преодоления трех последних из указанных выше недостатков требовалась совершенно иная энерговооруженность подводного ракетоносца и принципиально новые подходы к конструированию важнейших систем его жизнеобеспечения. В рамках традиционной дизель-электрической схемы эти задачи решить было уже невозможно. Для этого потребовалось использовать неисчерпаемые возможности атомной энергии не только в грозном оружии подлодки, но и в самой основе ее конструкции.

С реакторами, но без ракет. ╚November╩

А теперь пора вернуться к созданию упомянутого выше ╚объекта 627╩ √ первой советской АПЛ. Научным руководителем проекта был назначен академик А.П.Александров, бывший в то время заместителем И.В.Курчатова в Институте атомной энергии. Главным конструктором подводного корабля стал В.Н.Перегудов, главным конструктором ядерно-энергетической установки √ прославленный создатель первых советских реакторов, впоследствии академик, Н.А.Доллежаль.

По своей масштабности и общей сложности работ создание первой АПЛ стояло в одном ряду с крупнейшими научно-техническими проектами того времени. Требовались новые материалы и сплавы, способные выдерживать высокое давление и температуры. Нужны были новейшие системы жизнеобеспечения и связи, позволяющие месяцами находиться под водой и при этом выполнять поставленные оперативные задачи. Разрабатывалась принципиально новая компоновка узлов и агрегатов для повышения живучести АПЛ и снижения шумности работы ее машин и механизмов.

Наиболее сложным элементом, разумеется, стала энергетическая установка АПЛ, которая должна отвечать многим противоречивым требованиям: быть мощной, экономичной, легкой, компактной и долговечной одновременно. К ее проектированию были привлечены тридцать восемь специализированных НИИ и КБ, а к созданию √ двадцать семь предприятий по всей стране.

Рассматривались три основных типа реакторов: уран-графитовый, водо-водяной и реактор с жидкометаллическим теплоносителем. После многочисленных испытаний и обсуждений был выбран водо-водяной корпусной реактор на тепловых нейтронах с находящейся под давлением водой в качестве одновременно теплоносителя и замедлителя нейтронов. Он оказался более простым и использовал хорошо освоенный в энергетике теплоноситель √ воду. Кроме того, по сравнению с другими типами реакторов он требовал большей загрузки топлива по 235U, что обещало существенный выигрыш в компактности.

Здесь требовались не просто новые технические решения, а подлинный технический прорыв. Для сравнения: уран-графитовый реактор первой в СССР (и в мире) Обнинской АЭС, запущенной в 1954 г., имел объем 1500 м3 при мощности 30 МВт, а для АПЛ в отсеке объемом 435 м3 требовалось разместить два реактора по 70 МВт каждый вместе с биологической защитой персонала.

Следует отметить, что Обнинская АЭС сыграла выдающуюся роль в истории советского атомного флота. Она стала важнейшей экспериментальной и учебной базой как для технического совершенствования корабельных ЯЭУ, так и для подготовки экипажей АПЛ. А несколько позже, там же, на территории Физико-энергетического института, был построен действующий прототип ЯЭУ АПЛ (стенд 27/ВМ), на котором те же задачи решались предельно направленно и конкретно.

Тем не менее никакие стенды не могли компенсировать полного отсутствия опыта конструирования, постройки и эксплуатации малогабаритных судовых ЯЭУ. В условиях огромной спешки, сопутствующей созданию советского атомного флота, это не могло не привести (и приводило) к многочисленным неполадкам, а иногда √ и к серьезным авариям.

Первый советский реактор для АПЛ (ВМ-А) был запущен 8 марта 1956 г., и почти сразу же из его первого контура начались утечки радиоактивной воды. Другой проблемой стали парогенераторы √ на испытательных стендах они работали 18 √ 20 тыс ч, а в судовых условиях выходили из строя через 800 √ 1200 ч. Их поломки также часто приводили к радиоактивному загрязнению внутренних помещений АПЛ.

Степень обогащения топлива ВМ-А по 235U составляла около 21% √ в 5 раз выше, чем у топлива для АЭС (4%). Это позволило значительно реже производить перезагрузку топлива, но одновременно существенно удорожало его стоимость. Впрочем, это обстоятельство всегда играло в сравнении с тактико-техническими соображениями подчиненную роль, так что с развитием конструкций реакторов АПЛ степень обогащения непрерывно росла. У реакторов современных АПЛ она достигает 60%.

На советских АПЛ первого поколения устанавливалось по два реактора ВМ-А суммарной мощностью 140 МВт. ЯЭУ на их основе обладали прекрасными характеристиками по сравнению с американскими аналогами того времени. Даже при использовании лишь 80% от их номинальной мощности советские АПЛ имели лучшую энерговооруженность и могли развивать бо1льшую скорость, нежели американские.

В целом принципиальная схема реакторов АПЛ мало изменилась за последующие десятилетия. Разумеется, были различные усовершенствования и модификации (в частности, для повышения энерговооруженности кораблей степень обогащения ядерного топлива по 235U в новейших конструкциях была увеличена до 60%), но тип реакторов на всех типах советских стратегических АПЛ остался тем же. Можно лишь восхищаться талантом и мастерством ученых и инженеров, выбравших пятьдесят лет назад оптимальную конструкцию ЯЭУ.

Первая советская АПЛ проекта 627 была заложена в 1955 г. на заводе 402. На воду она была спущена уже через два года √ в апреле 1957 г., однако еще полтора года потребовалось для монтажа ЯЭУ. В апреле 1958 г. был закончен монтаж реакторов и получен первый пар, а в декабре того же года первая советская АПЛ была принята в эксплуатацию. Она получила кодовое наименование К-3. Позже весь мир узнал ее под именем ╚Ленинский комсомол╩.

Весь 1959 г. лодка доводилась до рабочего состояния. На вооружение она была принята фактически лишь в конце 1959 г. Почти одновременно с ней были закончены еще три АПЛ проекта 627 и его модификации 627А. До 1964 г. были построены тринадцать таких субмарин, получивших, по классификации НАТО, название ╚November╩. Десять из них были приписаны к Северному флоту, три √ к Тихоокеанскому.

Первая советская АПЛ поражала воображение даже старых подводников. Более чем стометровая длина, совершенная гидродинамическая форма, невиданная энерговооруженность √ все вызывало ассоциации с жюль-верновским ╚Наутилусом╩. Недаром именно так назвали свою первую АПЛ американцы.

К-3 была способна развивать под водой скорость около 50 км/ч, за считанные секунды погружаться на глубину 300 м, могла ╚пронырнуть╩ подо льдом всю Арктику, не всплывая неделями. В июле 1962 г. К-3 впервые совершила успешный рейд на Северный полюс, всплыв на вершине планеты, и благополучно вернулась на базу.

К сожалению, жизнь атомных подводников никогда не была беспечной. Уже через месяц, в очередном учебном плавании, возникла течь парогенератора, ставшая причиной серьезной радиационной аварии и значительного переоблучения экипажа. После этой аварии на К-3 был целиком заменен реакторный отсек, а старый, вместе с реакторными отсеками трех других АПЛ в середине 60-х гг. был затоплен у берегов Новой Земли √ на глубине от 20 до 300 м.

После этого К-3 пережила еще одну тяжелейшую аварию. В сентябре 1967 г. на этой лодке, находившейся при возвращении на базу в Норвежском море, вспыхнул пожар. АПЛ всплыла и в течение четырех суток двигалась в наводном положении. Она была спасена, но 39 моряков, составлявших более трети экипажа, погибли, сгорев заживо в двух запертых отсеках.

Не менее драматично складывалась история другой советской АПЛ проекта 627А √ К-8. Первая авария на ней случилась в октябре 1960 г., когда течь из активной зоны реактора привела к переоблучению тринадцати членов экипажа. Через год, в сентябре 1961 г., трещина в трубопроводе первого контура охлаждения реактора привела к разливу радиоактивной воды и переоблучению снова тринадцати (!) моряков. К сожалению, дурные приметы в отношении этой АПЛ сработали до конца √ в апреле 1970 г. в ходе маневров ╚Океан╩ она затонула в Бискайском заливе на глубине 4700 м вследствие пожара в реакторном отсеке.

Однако, несмотря на все аварии, факт остается фактом: в руки военных моряков попал уникальный подводной корабль, который мог служить надежной базой для самых современных систем оружия, в том числе и ядерного. Хотя план размещения на этих АПЛ ядерной ╚суперторпеды╩ Т-15 так никогда и не был реализован, 627-е, вооруженные 533-миллиметровыми ядерными торпедами Т-5, стали по одной из линий дальнейшего развития родоначальниками многочисленного семейства советских и российских многоцелевых АПЛ, главной задачей которых является борьба с подлодками и наводными кораблями противника. Предметом рассмотрения настоящей статьи они не являются √ в отличие от другой ветви развития подводных ядерных сил. А всего в СССР и России было построено 245 АПЛ различных типов против 281 в США.

Первые атомные подводные ракетоносцы. ╚Hotel╩

Созданием АПЛ проекта 627 в СССР был сделан важнейший, может быть, решающий шаг в развитии ╚третьей компоненты╩ стратегической ╚ядерной триады╩ √ создан подводный корабль, удовлетворявший всем тактико-техническим требованиям к труднообнаружимой и в высшей степени живучей передвижной подводной ракетной базе, обладающей колоссальным ударным потенциалом. Однако эта АПЛ такой базой не была √ стартовых ракетных комплексов она, как уже упоминалось, не несла. Этот последний шаг еще предстояло сделать, и с этим надо было снова торопиться.

Как уже отмечалось, наличие мощного бомбардировочного флота и многочисленных аэродромов передового базирования на опоясывающих территорию СССР военных базах с самого начала послевоенного противостояния обеспечивало США возможность нанесения ядерного удара по советским объектам. Однако такие качества систем подводного базирования ядерного оружия, как скрытность, мобильность, трудность организации мер противодействия, не могли пройти мимо внимания американских политиков и военных. При этом у США была немалая фора по времени √ первая в мире американская АПЛ ╚Наутилус╩ вышла в море уже в 1954 г. И хотя она, как позже ╚November╩ в СССР, не несла на борту БРПЛ, это выдающееся достижение американской науки и техники позволило США ╚перескочить╩ через ╚дизельную╩ стадию развития подводных ядерных сил. Уже в 1960 г. на боевое дежурство вышел первый в мире атомный ракетный подводный крейсер стратегического назначения (РПКСН) ╚George Washington╩ с шестнадцатью БРПЛ ╚Polaris╩ на борту. Это требовало от СССР быстрого ответного шага в подводной ядерной гонке.

С учетом хода работ по проекту 627 в 1956 г. было принято решение о создании первой советской ракетоносной АПЛ. Разработка проекта была поручена ленинградскому ЦКБ-18 (с 1966 г. √ Ленинградское проектно-монтажное бюро, ЛПМБ, ╚Рубин╩, позже √ ЦКБ МТ ╚Рубин╩), а главным конструктором после ряда кадровых перестановок был назначен С.Н.Ковалев √ в дальнейшем создатель всех без исключения проектов советских подводных ракетоносцев.

Эта АПЛ проекта 658, или ╚Hotel╩, по классификации НАТО, стала своеобразным ╚гибридом╩ созданных ранее научно-технических систем. С точки зрения собственно кораблестроения она была в основном модификацией проекта 627 √ при полном сохранении ЯЭУ и главных особенностей конструкции она имела несколько большее подводное водоизмещение (5000 м3) и меньшую скорость под водой (25 узлов), а за счет персонала стартового ракетного комплекса значительно возросла численность экипажа (104 человека вместо 84).

Строительство головной АПЛ проекта 658 К-19 было начато 17 октября 1958 г., а закончено 12 ноября 1960 г. Всего до конца 1962 г. на заводе 402 было построено восемь АПЛ этого типа.

По своим тактико-техническим характеристикам это был для своего времени прекрасный подводный корабль. Но ракетное вооружение проекта 658, по существу, устарело еще до принятия первой АПЛ этого типа на вооружение. Это был уже известный читателю комплекс Д-2 с БРПЛ Р-13 надводного старта, весьма несовершенными по сравнению с ракетами ╚Polaris╩. Впрочем, уже с конца 1963 г. была начата модернизация 658-х √ на них стали устанавливаться также описанные выше комплексы подводного старта Д-4 с тремя ракетами Р-21. Модернизированные АПЛ получили индекс 658М (╚Hotel-II╩). За 1963 √ 1967 гг. были переоборудованы семь из восьми советских подводных ракетоносцев. Пять из них несли службу на Северном флоте; последний был выведен из боевого состава флота в 1991 г. Две АПЛ проекта 658 (позже переоборудованные по проекту 658М) были переведены на Тихоокеанский флот (в 1953 и 1968 гг.) √ это были первые ракетоносные АПЛ в его составе. Они были выведены из боевого состава в 1988 и 1990 гг.

В 1969√1970 гг. одна из АПЛ проекта 658М (К-145) была переоборудована для проведения испытаний нового ракетного комплекса подводного старта Д-9 с шестью ракетами Р-29 КБМ В.П.Макеева √ первыми советскими БРПЛ с межконтинентальной дальностью (7800 км). Модернизированная таким образом АПЛ получила индекс 701 (╚Hotel-III╩). Именно с этой АПЛ в 1971√1972 гг. были проведены первые морские пуски Р-29 √ целой эпохи в развитии советских БРПЛ.

К сожалению, и 658-е не избежали появления в своем составе ╚несчастливого╩ корабля, вся судьба которого словно подтверждает дурные приметы и предчувствия суеверных моряков. Речь в данном случае идет о головной АПЛ проекта √ уже упоминавшейся К-19. Уже на первом боевом патрулирования в Северной Атлантике 4 июня 1961 г. из-за неисправности циркуляционных насосов и перегрева контура произошла расгерметизация рубашки охлаждения и как следствие √ серьезная радиационная авария. От острой лучевой болезни погибли двадцать два человека, а это очень много, если иметь в виду, что общее количество лиц, которым был поставлен диагноз ╚острая лучевая болезнь╩, за всю ╚атомную╩ историю СССР/России составило всего сто тридцать четыре человека.

15 ноября 1969 г. в Баренцевом море К-19 столкнулась с преследовавшей ее американской ударной АПЛ ╚Gato╩. Жертв не было, но повреждения были достаточно ощутимы √ почти полностью разрушились носовые акустические системы, были также деформированы крышки торпедных аппаратов. Но и на этом несчастья К-19 не закончились. 24 февраля 1972 г. при возвращении с боевого патрулирования вблизи острова Ньюфаундленд на ней произошел крупный пожар. Более сорока дней в штормовом море шла борьба за спасение корабля, в которой, помимо экипажа, принимало участие свыше тридцати кораблей советского ВМФ. В конце концов лодка была спасена и отбуксирована на базу Северного флота. Победа, однако, далась дорогой ценой √ двадцать восемь членов экипажа К-19 заплатили за нее жизнью.

Ракетоносный атомный флот. ╚Yankee╩

Итак, итогом развития первого поколения советского ракетоносного атомного флота стали восемь АПЛ проектов 658 и 658М, каждая из которых несла по три моноблочных БРПЛ.

Много это или мало? Ответ однозначен √ непозволительно мало, если учесть, что каждая из американских АПЛ типа ╚George Washington╩ несла на борту 16 БРПЛ ╚Polaris╩, а в течение 1960√1967 гг. американские ВМФ получили сорок одну такую АПЛ. Почти двадцатипятикратное преимущество! Да и тактико-технические характеристики советских АПЛ первого поколения (╚November╩ и ╚Hotel╩), вполне сравнимые с первыми американскими АПЛ типа ╚Наутилус╩ (и даже кое в чем превосходившие их), явно уступали ракетоносцам программы ╚Polaris╩. Речь шла в первую очередь о скорости движения под водой и в особенности шумности. Перед советскими конструкторами встали проблемы, в какой-то мере сходные с уже встречавшимися ранее в связи с созданием флота дизельных ракетоносных ПЛ (переход от ╚Zulu╩ к ╚Golf╩). При этом решению подлежали следующие главные задачи:

√ переход от прототипа к образцу. Именно ограниченность тактико-технических характеристик АПЛ проекта 658 была во многом обусловлена тем, что их прототип ╚November╩ был ╚безракетным╩. Стало понятно, что качественное их улучшение возможно лишь в рамках создания специализированной конструкции подводного ракетоносца;
√ переход от единичных кораблей к флоту. Чтобы ответить на американский вызов, нужны были не единицы √ десятки ракетоносных АПЛ;
√ резкое, еще невиданное в истории создания советского подводного флота, увеличение ударной мощи каждой АПЛ как самостоятельной боевой единицы. Три ракеты на борту каждой из 658-х по сравнению с шестнадцатью ╚Polaris▒ами╩ на американских РПКСН типа ╚George Washington╩ представлялись в 60-х гг. уже полным анахронизмом;
√ качественное улучшение двух важнейших тактико-технических характеристик АПЛ, в огромной мере влияющих на их скрытность и живучесть: подводной скорости и шумности.

Последнее имело особое значение. В конце 50-х гг. всерьез обеспокоенные развитием советских подводных ракетоносных сил и, что еще важнее, их перспективами, США и страны НАТО стали экстренно создавать комплексную систему ПРО, охватывающую наиболее важные в оперативном отношении районы Мирового океана. В соответствии с программой ╚Цезарь╩ США разместили сеть акустических гидрофонов-обнаружителей на континентальном шельфе вдоль своего восточного побережья, вблизи Гавайских островов и на подводных возвышенностях. В Атлантическом океане была развернута аналогичная сеть ╚SOSUS╩, главной целью которой было раннее обнаружение проникновения советских ПЛ из Баренцева моря в Северную Атлантику. Постоянно действующими элементами системы ПРО стали также авиация, подводные и надводные силы ВМФ, позже √ космические средства. На вооружение сил ПЛО поступали новейшие технические разработки √ магнитометры, гидродинамические термометры (приборы, фиксирующие изменение температуры воды при прохождении массивного подводного объекта) и др.

Результаты не замедлили сказаться. Так, все шесть советских дизельных ПЛ проекта 629, вышедшие к берегам Америки в дни Карибского кризиса, были обнаружены еще в начале перехода. За ними было установлено непрерывное наблюдение, и легко догадаться, какая судьба бы их ожидала в случае начала боевых действий.

Все эти обстоятельства учитывались в ЦКБ-18, где с 1958 г. под руководством С.Н.Ковалева была начата работа по созданию принципиально новой АПЛ, удовлетворяющей (в большей или меньшей степени) сформулированным выше требованиям. Ее технический проект, получивший номер 667А, был утвержден в 1962 г., а головной корабль этой серии (К-137), заложенный в 1964 г. на заводе 402, вошел в состав Северного флота 5 ноября 1967 г.

Создание АПЛ проекта 667А было действительно качественным скачком в развитии советского подводного ракетоносного флота. В новом подводном крейсере поражало все. Прежде всего √ громадные размеры: его водоизмещение составляло 9600 м3 против 5000 м3 у АПЛ проекта 658. И тем не менее тщательность разработки форм корпуса, систем динамической стабилизации и управления позволяли новой АПЛ двигаться под водой с рекордно высокой скоростью (27 узлов), чему способствовала и новая конструкция ЯЭУ корабля. Два водо-водяных реактора с новыми типами парогенераторов и турбин, созданные с учетом как достоинств, так и недостатков реакторов ВМ-А, позволяли получать мощность на валах винтов лодки до 52 тыс л. с. √ в полтора раза больше, чем у АПЛ проекта 658.

При этом, несмотря на размеры и мощь, новые подводные гиганты обладали ╚кошачьим шагом╩ √ их шумность была почти втрое меньше, чем у 658-х. Это было достигнуто применением специальных шумопоглощающих элементов корпуса лодки, главным образом гребных винтов новой конструкции. Однако до конца сравняться с американскими АПЛ по уровню шумности тогда все же не удалось.

На новых АПЛ были установлены принципиально новые системы навигации, управления и связи, вошедшие с дальнейшими модификациями во все последующие разработки: боевая информационно-управляющая система ╚Туча╩, глубинная буксируемая антенна ╚Параван╩, первый советский инерциальный навигационный комплекс ╚Тобол╩, впервые адаптированный для системы спутниковой навигации.

Далее, это был первый проект советских РПКСН, действительно ориентированный на массовое, серийное производство. Эпоха ╚ручного╩ изготовления многих узлов и систем ракетоносных АПЛ уходила в прошлое √ наступало время их производства на конвейере. Без этого создание стратегического подводного флота было бы иллюзией.

Огромные усилия советских ученых и инженеров по повышению технологичности производства новых АПЛ увенчались успехом √ с 1967 по 1974 гг. на Севмашпредприятии и АСЗ были выпущены тридцать четыре РПКСН серии 667А (двадцать четыре и десять соответственно). Впервые СССР стал обладателем подводных ядерных сил действительно огромной мощи, особенно если иметь в виду вооружение новых РПКСН.

И здесь изменения были не менее революционными. Вместо трех ракет на 658-х на борту каждой АПЛ проекта 667А устанавливался комплекс Д-5 с шестнадцатью одноступенчатыми жидкотопливными ракетами Р-27 подводного старта, разработанными в КБМ. Каждая из них несла моноблочную ядерную боеголовку мощностью 1 Мт. Именно принятием на вооружение АПЛ проекта 667А в СССР был сделан качественный скачок √ от подводных стартовых площадок к подводным ракетным базам. К 1974 г. они несли вместе 544 ядерные боеголовки, что составляло на то время примерно 20% от их общего количества в СССР.

Ответ на программу ╚Polaris╩ был дан, хоть и с некоторым запозданием (8√10 лет). При этом западных специалистов удивила не только полная стратегическая и техническая симметрия ответа (этого можно было ожидать), а тактико-технические и конструктивные данные инструмента этого ответа √ РПКСН проекта 667А. Они были по всем характеристикам настолько похожи на своих заокеанских визави типа ╚George Washington╩, что получили, по классификации НАТО, обозначение ╚Yankee╩. Это обстоятельство дало основание некоторым исследователям проблемы сделать предположение о немалой заслуге, которая принадлежит в деле реализации проекта 667А советской технической разведке. Исключить этого, по-видимому, нельзя, хотя сведений о доказательных информационных источниках такого рода автору обнаружить не удалось.

На текущей модификации этих АПЛ √ 667АУ (╚Yankee-II╩) в составе стартового комплекса Д-5У устанавливались усовершенствованные БРПЛ Р-27У. По сравнению с Р-27 они имели большую дальность √ до 3000 км √ и могли оснащаться тремя боевыми блоками по 200 кт без индивидуального наведения. 667АУ были первыми советскими РПКСН, подлежавшими учету по заключенному между СССР и США в 1991 г. договору СНВ-1. По его документам они получили имя ╚Навага╩. Это стало еще одним (пусть и запоздалым) свидетельством огромной мощи этих АПЛ и их стратегической значимости.

Гонка между СССР и США за превосходство подводной компоненты ╚ядерной триады╩, однако, продолжалась. Новый ее виток был начат принятием на вооружение ВМФ США БРПЛ ╚Polaris A-3╩ с дальностью 4600 км против 2200 км у ╚Polaris A-1╩ и 2400 км у Р-27.

Это был не только новый количественный, но и важнейший качественный показатель, поскольку он напрямую определял важнейшую характеристику оперативного использования РПКСН √ районы боевого патрулирования. Исходя из дальности стрельбы ракет Р-27, он для АПЛ проекта 667А располагался в основном в западной части Атлантического океана и в восточной √ Тихого. Это вынуждало их при выходе в районы боевого патрулирования преодолевать упомянутые выше рубежи ПЛО США и НАТО. И несмотря на то, что, как уже указывалось, шумность ╚Наваг╩ была существенно уменьшена по сравнению с ранними проектами, силам ПЛО удавалось сравнительно эффективно осуществлять контроль за ними.

Пока ситуация в этом смысле была ╚зеркальной╩ (ПЛО СССР была не менее эффективна, чем американская), РПКСН проектов 667А и 667АУ могли считаться вполне современными. Однако принятие в начале 70-х гг. на вооружение ВМФ США подводных ракетоносцев ╚Iton Allen╩ и ╚La Fayette╩, вооруженных ракетами ╚Polaris А-3╩ и еще более современными БРПЛ ╚Poseydon╩, вынудило СССР делать новый шаг в подводной ядерной гонке.

И все же АПЛ проекта 667А и АУ хорошо послужили стране. Именно они положили конец полному господству США на морских просторах. Только в 1997 г. последние РПКСН этого типа были сняты с боевого дежурства, а пять из них находятся в строю до сих пор √ их используют для специальных проектов. Например, АПЛ К-411 была переоборудована в носитель сверхмалых ПЛ, К-403 √ в мощную подводную радиолокационную станцию. БРПЛ на этих кораблях нет.

К сожалению, и ╚Yankee╩ не удалось избежать аварий и катастроф. В мае 1974 г. АПЛ проекта 667А, входившая в состав Тихоокеанского флота, вблизи Камчатки на глубине около 70 м столкнулась с американской ударной АПЛ ╚Pintado╩, находившейся, вероятно, на боевом дежурстве в структуре сил ПЛО США. Впрочем, советская АПЛ тогда получила лишь незначительные повреждения. Настоящая беда пришла в октябре 1986 г., когда на РПКСН К-219 проекта 667АУ в ходе боевого патрулирования в 970 км восточнее Бермудских островов при взрыве в ракетной шахте (по мнению ряда специалистов, опять-таки вследствие столкновения с американской АПЛ) произошел пожар. В борьбе за спасение своего корабля экипаж проявил подлинный героизм √ ему удалось осуществить всплытие и заглушить реакторы. Однако при попытке отбуксирования АПЛ на базу флота пожар и океан оказались сильнее √ 6 октября 1986 г. она затонула на глубине свыше 5 км. Тогда погибли четыре советских подводника.

Окончание следует

TopList